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Abstract—This paper discusses the weak coupling of nonlinear
magnetoquasistatic field models (e.g. of induction motors) to an
external electric network model (e.g. of a pulse-width-modulator).
A piece-wise linear inductance (as lumped field model) is not
sufficiently accurate if the magnetic field exhibits strong eddy
current effects. To this end, we propose to represent the field
model in the circuit equations by its Schur complement. This
gives a better lumped model, which is fitted during the dynamic
iteration. We demonstrate the link between iterations and the
achievable order analytically and numerically.

I. I NTRODUCTION

We consider time-domain simulation. The extraction of (lin-
ear) lumped parameter model from electric machinery using
FEM is a well established, [1], [2]. Those lumped models
are typically used in Spice-like circuit simulators. In contrast
to this, a strongly coupled simulation, [3], [4], solves the
distributed field/circuit problem. This is necessary to account
for nonlinear effects (e.g. saturation) in magnetic fields.

Now, the weak coupling is the synthesis of both approaches:
electric circuit and magnetic field are solved independently in
time, but intermediate solutions (waveforms) are exchanged at
synchronization points. The machine model is then represented
in the circuit by current or voltage sources, [5], or by extracted
inductances, [6], [7]. This allows the circuit simulator to
choose much smaller time steps than the field solver (between
the synchronization points), in order to deal with switching
effects in the power electronics, [8].

In this paper we abandon technically motivated circuit rep-
resentations and propose more algebraic Schur complements
for representing the field model. Moreover, our co-simulation
explicitly allows iteration over the time windows in order to
adapte the surrogate machine model to changes in the drive.
We show that dynamic iteration, i.e., the repeated computation
of the time windows, is necessary for any model to realize
higher order time integration. For example the classical opera-
tor splitting approaches, are restricted for differentialalgebraic
problems to first order, [9].

II. M ATHEMATICAL MODEL

The simulation of an induction machine (Fig. 1) necessitates
to consider eddy-current and saturation effects, e.g. the MQS
model, [10], [11]:

M
d
dt

⌢

a + k(⌢a, θ)−Xi = 0, (1)
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r
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Fig. 1. 2D model of an induction motor, [2].

with circuit-coupling equations

X
⊤

d
dt

⌢

a +Ri = v, (2)

where⌢

a denotes the line-integrated magnetic vector potentials.
R, i and v are the resistances, currents and voltage drops
of the stator windings. Each column of the matrixX is a
discretization of a winding function, such thatXi distributes
the applied currentsi. M is the conductivity matrix and
k is the curl-curl-reluctivity term. The reluctivity depends
nonlinearly on the magnitude of the discrete flux density|

⌢
⌢

b|2

defined by
⌢
⌢

b = C
⌢

a (with discrete curl operatorC).

Moreover the topology depends on the rotor angleθ (see
Fig. 1), which solves the motion equation:

m
d2

dt2
θ + λ

d

dt
θ = f(||

⌢
⌢

b||2) (3)

with mass moment of inertiam, rotational frictionλ and force
f being an affine map, [10].

III. C OUPLING BY THE SCHUR COMPLEMENT

To demonstrate this coupling, we discretize problem (1) also
in time. For simplicity of notation, we use the Backward-
Euler-scheme with time step∆t. In each time step for (1),
the Newton iteration leads to a series of linear systems with
the Jacobian

Ja :=
( 1

∆t
M +K(|

⌢
⌢

b|2, θ)
)

,
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whereK is the differential curl-curl-reluctivity matrix. Now
inserting⌢

a from (1) into (2), the Jacobian (w.r.t.i) reads

Ji :=

(

1

∆t
L+R

)

(4)

using the Schur complement matrix

L(|
⌢
⌢

b|2, θ) := X
⊤

(

1

∆t
M +K(|

⌢
⌢

b|2, θ)

)−1

X. (5)

This results in a lumped, nonlinear, time-dependent model,
which consists of a series of a generalized inductanceL

and a linear resistancesR for each conductor. It is used as
network model to represent the magnetostatic field device.
Thus in every Newton-iteration of the circuit simulator, only
this lumped model needs to be updated and the whole vector
potential is consealed from the circuit simulator, [12]. A
drawback is the additional burden of repeatedly solving the
linear system for the Schur-complement. This can be reduced
by bypassing, [13], or by co-simulation.

IV. CO-SIMULATION

Our co-simulation is organized as a Gauss-Seidel-Scheme.
The time-in terval of interest[0, T ] is subdivided into a series
of time windows: 0 = T0 < T1 < · · · < Tn = T with
synchronization pointsTi. Field and circuit are sequently
solved on those windows[Ti, Ti+1], whereby each subproblem
uses its own time stepping procedure (multirate, i.e, a different
∆t) and whole waveforms are exchanged.

Before simulation, resistanceR is extracted. Now, let us
start by solving the field problem. To this end, we constantly
extrapolate the circuit’s waveforms, then solve the field and
motion system problem (1–3). In a post-processing step the
inductance matrix (5) is computed from the obtained wave-
forms. The result is inserted into the circuit equations as a
lumped model. Then the circuit is solved and one obtains its
waveforms. This algorithm may be applied iteratively on each
time window, i.e., the field problem can be recomputed on the
time window by using the new circuit waveforms etc. This is
necessary, cf. [9], if a higher-order time integration is favored.

V. H IGHER ORDER TIME-INTEGRATION

When using a time-integrator of orderp for strong coupled
problem on the time window[Ti, Ti+1], one obtains a wave-
form that is accurate up toO(Hp

i ), whereHi = Ti+1−Ti and
H

p

i = (m · ∆t)p with m time-steps. On the other hand, the
weak coupling introduces additionally a splitting error. This
error depends on the particular subproblems, but the order
of convergence can be deduced from the abstract coupling
structure, [8]. We can show by using arguments from fixed
point analysis that each iteration on a time-window gives us
at minimum an accuracy improvement ofO(Hi).

VI. CONCLUSIONS

The importance of the number of iterations is also numeri-
cally visualized in Fig. 2 using the field/circuit problem from
[8]. It was simulated by the weak coupling as introduced above
and time-integration was carried out by RADAU5, [14]. The
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Fig. 2. The asymptotic behavior of higher order time-integaration (RADAU5)
differs depending on the number of iterations.

plot shows that each additional iteration increases the order. In
this particular example byO(H2). Therefore one iteration is
sufficient for first order schemes like backward Euler, but more
iterations are mandatory if higher order schemes are used.
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[8] S. Scḧops, H. De Gersem, and A. Bartel, “A cosimulation framework
for multirate time-integration of field/circuit coupled problems,” IEEE
Trans Magn, vol. 46, no. 8, pp. 3233 – 3236, 2010.

[9] P. K. Vijalapura, J. Strain, and S. Govindjee, “Fractional step methods
for index-1 differential-algebraic equations,”Journal of Computational
Physics, vol. 203, no. 1, pp. 305 – 320, 2005.

[10] S. J. Salon,Finite Element Analysis of Electrical Machines. Kluwer,
1995.

[11] A. Buffa and F. Rapetti, “A sliding mesh-mortar method for atwo-
dimensional eddy currents model of electric engines,”M2AN, 1999.

[12] J. Vaananen, “Circuit theoretical approach to couple two-dimensional
finite element with external circuit equations,”IEEE Trans Magn,
vol. 32, no. 2, pp. 400 –410, 1996.
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